

ALCANCE DE ACREDITACIÓN LABORATORIO DE ENSAYOS

CHAVEZSOLUTIONS AMBIENTALES CIA. LTDA.

Matriz: Ignacio Asín N52-24 Y Antonio Román Telf: +593 2-224-0724 Ext: 105

e-mail: gerencia@chavezsolutions.com

Ciudad: Quito - Ecuador

Fecha de acreditación inicial: 2014/01/10

ACREDITACIÓN NÚMERO: SAE LEN 14-002

Unidad Técnica 1: Francisco de Orellana, Calle Fermín Vaca S/N Pasaje Río Coca (Barrio Cambihuasi, Sector Antiguo Hospital de El Coca, a

tres cuadras del Aetopuerto del Coca) Telf: +593 6-288-1778 e-mail: labcoca@chavezsolutions.com

Nota: Se identificarán los alcances suspendidos con un sombreado de color gris oscuro cuando aplique.

Está acreditado por el Servicio de Acreditación Ecuatoriano (SAE) de acuerdo con los requerimientos establecidos en la Norma NTE INEN ISO/IEC 17025:2018 equivalente a la Norma ISO/IEC 17025:2017, para las siguientes actividades:

Matriz

Alcances

Categoría	En laboratorio					
Campo	Análisis microbiológicos en aguas					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia	
ensayar						
Agua consumo Agua natural Agua residual	Coliformes fecales	Número más probable	≥ 1,0 NMP/ 100 ml	PEE96	Standard Methods, Ed. 24. 2023 9223 B; ISO 9308-2:2012	

Agua consumo Agua natural Agua residual	Coliformes fecales	Filtración por membrana	≥ 1 UFC / 100 ml	Standard Methods, Ed. 24. 2023 9222 D; ISO 9308-1:2014
Agua consumo Agua natural Agua residual	Coliformes totales y E.coli	Número más probable	≥ 1,0 NMP/ 100 ml	Standard Methods, Ed. 24. 2023 9223 B; ISO 9308-2:2012
Agua consumo Agua natural Agua residual	Coliformes totales y E.coli	Filtración por membrana	≥ 1 UFC / 100 ml	Standard Methods, Ed. 24. 2023 9222 J; ISO 9308-1:2014

Categoría	En laboratorio						
Campo	Análisis Físico – Químicos en Aguas						
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar							
Aguas de consumo Aguas naturales Aguas residuales	Berilio (Be)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20,00 - 100,00) ug/l (0,02 - 0,10) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992: EPA METHOD 6010 D, Julio 2018		
Agua consumo Agua natural Agua residual	Metales: Mercurio (Hg)	Espectrofotometría de absorción atómica, vapor frío	(0,1 - 898.30) ug/L	PEE122	STANDARD METHODS 24 th Ed 2023. 3112 B , EPA METHOD 3010 A adaptado, July 1992, EPA, EPA METHOD 7470 A September 1994		
Agua consumo Agua natural Agua residual	Metales: Arsénico (As)	Espectrofotometría de absorción atómica, generación de hidruros	(1 - 1013.7420) ug/l	PEE123	STANDARD METHODS 24 th Ed 2023. 3114 B, EPA METHOD 3010 A, adaptado, July 1992, EPA METHOD 7062, September 1994.		
Agua consumo Agua natural	Metales:Selenio (Se)	Espectrofotometría de absorción	(0.95 - 961.82) ug/l	PEE124	STANDARD METHODS 24 th Ed 2023. 3114 B, EPA		

Agua residual		atómica, Generador de Hidruros			METHOD 3010 A adaptado, July 1992, EPA METHOD 7742, September 1994
Aguas de consumo Aguas naturales Aguas residuales		Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	20,00 - 100,00 ug/l 0,02 - 0,10 mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992: EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Plomo (Pb)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(40,00 - 250,00) ug/l (0,04 - 0,25) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992: EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Manganeso (Mn)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20,00 - 100,00) ug/l (0,02 - 0,10) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992 EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales:Selenio (Se)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(40,00 - 250,00) ug/l (0,04 - 0,25) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992: EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Zinc (Zn)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20,00 - 100,00) ug/l (0,02 - 0,10) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992 EPA METHOD 6010 D, Julio 2018
Aguas Naturales Aguas Residuales Aguas de Consumo	Metales: Bario (Ba)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(10,00 - 100,00) ug/l (0,01 - 0,10) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992: EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Cobalto (Co)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(10,00 - 100,00) ug/l (0,01 - 0,10) mg/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992 EPA METHOD 6010 D, Julio

					2018
Aguas de consumo Aguas	Metales: Cobre	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	(Cu)	Óptica de Plasma	ug/l		adaptado Julio 1992:
		por Acoplamiento			
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio
			(5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.		2018
Aguas de consumo Aguas	Metales: Vanadio	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	(V)	Óptica de Plasma	ug/l		adaptado Julio 1992
		por Acoplamiento	(0.01 0.10) (1.		EDA METHOD 6010 D. Ivilia
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Metales: Aluminio	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales		Óptica de Plasma	ug/l	FEE 93	adaptado Julio 1992:
Tractarates Aguas residuates	(A)	por Acoplamiento	lug/i		adaptado juno 1992.
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio
			(0,01 0,10,1119,1		2018
Aguas de consumo Aguas	Metales:	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	Molibdeno (Mo)	Óptica de Plasma	ug/l		adaptado Julio 1992
_		por Acoplamiento			
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio
					2018
Aguas de consumo Aguas	Metales: Plata (Ag)	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales		Óptica de Plasma	ug/l		adaptado Julio 1992:
tratadas		por Acoplamiento	(0.01.0.10) #		EDA 1457110D 6010 D 1 11
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio
A	Matalaa, Cuama	Fan a abus na abu/a	(10.00 100.00)	DEE OF	2018 EPA METHOD 3010A
Aguas de consumo Aguas naturales Aguas residuales		Espectrometría Óptica de Plasma	(10,00 - 100,00)	PEE 95	
liaturales Aguas residuales	(Cr)	por Acoplamiento	ug/l		adaptado Julio 1992
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio
		inductivo (ICF-OLS)	(0,01 - 0,10) ilig/i		2018
Aguas de consumo Aguas	Metales: Niguel	Espectrometría	(20,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	II	Óptica de Plasma	ug/l	== 55	adaptado Julio 1992:
		por Acoplamiento	3,		
		Inductivo (ICP-OES)	(0,02 - 0,10) mg/l		EPA METHOD 6010 D, Julio
		,]		2018
Aguas de consumo Aguas	Metales: Mercurio	Espectrometría	(10,00 - 100,00)	PEE 95	EPA METHOD 3010A

naturales Aguas residuales	(Hg)	Óptica de Plasma por Acoplamiento	ug/l		adaptado Julio 1992
		Inductivo (ICP-OES)	(0,01 - 0,10) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Calcio (Ca)	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992:
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Hierro (Fe)	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Potasio (K)	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992:
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Sodios (Na)	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Estroncio	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992:
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Magnesio (Mg)	Espectrometría Óptica de Plasma por Acoplamiento	(200,00 - 10 000,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992
		Inductivo (ICP-OES)	(0,20 - 10,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas naturales Aguas residuales	Metales: Antimonio (Sb)	Espectrometría Óptica de Plasma por Acoplamiento	(20,00 – 100,00) ug/l	PEE 95	EPA METHOD 3010A adaptado Julio 1992:

		Inductivo (ICP-OES)	(0,02 - 0,10) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Talio (TI)	Espectrometría	(80,00 - 250,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales		Óptica de Plasma por Acoplamiento	ug/l		adaptado Julio 1992
		Inductivo (ICP-OES)	(0,08 - 0,25) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Metales: Arsénico	Espectrometría	(80,00 - 250,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	(As)	Óptica de Plasma por Acoplamiento	ug/l		adaptado Julio 1992:
		Inductivo (ICP-OES)	(0,08 - 0,25) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Metales: Fósforo	Espectrometría	(1 000,00 - 15	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	(P)	Óptica de Plasma por Acoplamiento	000,00) ug/l		adaptado Julio 1992
		Inductivo (ICP-OES)	(1,00 - 15,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Boro	Espectrometría	(1 000,00 - 15	PEE 95	EPA METHOD 3010A
naturales Aguas residuales		Óptica de Plasma por Acoplamiento	000,00) ug/l		adaptado Julio 1992:
		Inductivo (ICP-OES)	(1,00 - 15,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Azufre	Espectrometría	(1 000,00 - 15	PEE 95	EPA METHOD 3010A
naturales Aguas residuales		Óptica de Plasma por Acoplamiento	000,00) ug/l		adaptado Julio 1992
		Inductivo (ICP-OES)	(1,00 - 15,00) mg/l		EPA METHOD 6010 D, Julio 2018
Aguas de consumo Aguas	Metales: Estaño	Espectrometría	(20,00 - 100,00)	PEE 95	EPA METHOD 3010A
naturales Aguas residuales	(Sn)	Óptica de Plasma por Acoplamiento	ug/l		adaptado Julio 1992:
		Inductivo (ICP-OES)	(0,02 - 0,10) mg/l		EPA METHOD 6010 D, Julio 2018

Categoría	En laboratorio

Campo	Análisis físico – químicos en suelos, lodos y sedimentos						
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar	D ''' (D)		(0. 100) #4	DEE 05	EDA METUOD 2050D		
Suelos, lodos y	Berilio (Be)	Espectrometría	(2 - 186) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos		Óptica de Plasma			adaptado Diciembre 1996		
		por Acoplamiento			EDA METUOD COLO D. L. I'		
		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
Cualas ladas v	Matalaa, Cadraia	Fam a abreau abre/a	(2 250) ====///==	PEE 95	2018 EPA METHOD 3050B		
Suelos, lodos y	Metales: Cadmio	Espectrometría	(2 – 259) mg/Kg	PEE 95			
sedimentos	(Cd)	Óptica de Plasma por Acoplamiento			adaptado Diciembre 1996:		
		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
		inductivo (ici -olo)			2018		
Suelos, lodos y	Metales:	Espectrometría	(2 – 892) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos	Manganeso (Mn)	Óptica de Plasma	(2 032) mg/kg		adaptado Diciembre 1996:		
3646	l langanese (i iii)	por Acoplamiento					
		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
					2018		
Suelos, lodos y	Metales:Selenio	Espectrometría	(4 – 82,70) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos	(Se)	Óptica de Plasma			adaptado Diciembre 1996:		
		por Acoplamiento					
		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
					2018		
Suelos, lodos y	Metales: Zinc (Zn)	Espectrometría	(2 – 806) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos		Óptica de Plasma			adaptado Diciembre 1996:		
		por Acoplamiento					
		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
			(1 272) #4		2018		
Suelos, lodos y	Metales: Bario (Ba)		(1 - 372) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos		Óptica de Plasma			adaptado Diciembre 1996:		
		por Acoplamiento Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio		
					2018		
Suelos, lodos y	Metales: Cobalto	Espectrometría	(1 – 230) mg/Kg	PEE 95	EPA METHOD 3050B		
sedimentos	(Co)	Óptica de Plasma	(1 - 230) Hig/Ng		adaptado Diciembre 1996:		
Jedii ilelitos	(00)	por Acoplamiento			daaptado Dicicilibre 1990.		
		Por Acopidimento					

		Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Cobre (Cu)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 - 210) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Vanadio (V)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 – 97,80) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Aluminio (Al)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 – 6781) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Molibdeno (Mo)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 - 263) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Plata (Ag)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 – 51) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Cromo (Cr)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 - 156) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Niquel (Ni)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(2 – 174) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018

Suelos, lodos y sedimentos	Metales: Mercurio (Hg)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(1 - 9,93) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Calcio (Ca)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 - 18 950) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Hierro (Fe)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 – 7 460) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Potasio (K)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 - 9 497) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Sodios (Na)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 – 7 047) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Estroncio	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 – 107) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Magnesio (Mg)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(20 - 1 813) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Antimonio (Sb)	Espectrometría Óptica de Plasma	(2 - 48,50) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996:

		por Acoplamiento Inductivo (ICP-OES)			EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Talio (TI)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(8 - 178) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Arsénico (As)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(8 – 75,60) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Fósforo (P)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(100 - 1 500) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Azufre	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(100 - 1 500) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Metales: Estaño (Sn)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(2 - 103) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos Sedimentos	Metales: Calcio (Ca)	Espectrofotometría de absorción atómica de llama, aire- acetileno	(155,24 a 17290,19) mg/kg	PEE 90	EPA, Ed. 2 1996, 3050 B Standard Methods. 24th ed. 2022, 3111 B
Suelos Sedimentos	Metales: Hierro (Fe)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(207,63 a 22285,97) mg/kg	PEE 19	EPA, Ed, 2 1996, 3050 B Standard Methods 24th ed, 2022 3111-B
Suelos Lodos	Metales: Arsénico (As)	Espectrofotometría Absorción Atómica-	(4.72 - 77.66) mg/kg	PEE123	STANDARD METHODS 24 th Ed 2023. 3114 B, EPA

Sedimentos		Generación de Hidruros			METHOD 3050B adaptado, December 1996, EPA METHOD 7062, September 1994
Suelos Lodos Sedimentos	Metales: Mercurio (Hg)	Espectrofotometría de absorción atómica, vapor frío	(0.10 - 27.73) mg/kg	PEE122	STANDARD METHODS 24 th Ed 2023. 3112 B A, EPA METHOD 3050B adaptado, EPA, METHOD 7471 B, Febrero 2007
Suelos Lodos Sedimentos	Metales:Selenio (Se)	Espectrofotometría Absorción Atómica- Generación de Hidruros	(0.99 – 50.89) mg/kg	PEE124	STANDARD METHODS 24 th Ed 2023. 3114 B, EPA METHOD 3010 A adaptado, July 1992, EPA METHOD 3050B adaptado, December 1996, EPA METHOD 7742, September 1994.
Suelos, lodos y sedimentos	Metales: Plomo (Pb)	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(4 – 225) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018
Suelos, lodos y sedimentos	Boro	Espectrometría Óptica de Plasma por Acoplamiento Inductivo (ICP-OES)	(100 – 596) mg/Kg	PEE 95	EPA METHOD 3050B adaptado Diciembre 1996: EPA METHOD 6010 D, Julio 2018

Categoría	En laboratorio	n laboratorio					
Campo	Análisis Físico-Quín	Análisis Físico-Químico en aguas					
Producto o material a ensayar	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
Aguas naturales Aguas de	Fluoruros	Espectrofotometría	(0,1 a 5) mg/l	PEE43.	HACH 8029, 10ª Edición,		

consumo Aguas residuales	1	UV- VIS			2018
Aguas naturales Aguas de	Nitritos	Espectrofotometría	(0,1 a 10) mg/l	PEE55	HACH 8507, 11ª Edición,
consumo Aguas residuales		UV- VIS			2019
Aguas naturales Aguas de	Sulfatos	Espectrofotometría	(5 a 1 000) mg/l	PEE44.	HACH 8051, 11º Edición,
consumo Aguas residuales		UV- VIS			2019
Aguas naturales Aguas de	Turbidez	Espectrofotometría	(5 a 200) NTU	PEE57	HACH 8237, 8º edición,
consumo Aguas residuales		UV-Vis			2013
Aguas naturales Aguas de		Cromatografía	(0,0002 a	PEE38.	EPA 8310, 1986; EPA 8510
consumo Aguas residuales		líquida de alta			C, 1996; EPA 8630 C,
	Policíclicos (HAP's)	eficiencia, HPLC	0,0006)		1996; Epa550.1 1990
			mg/lAcenafteno,		
			Acenaftileno,		
			Antraceno,		
			Benzo(a) antraceno,		
			Benzo(a)pireno, Dib		
			enzo(a,h)antraceno,		
			Fluoreno, Naftaleno,		
			Pireno. Benzo(b)fluo		
			ranteno,		
			Benzo(g,h,i)perileno		
			, Benzo(k)fluorante		
			no, Criseno,		
			Fenantreno,		
			Fluoranteno,		
			Indeno(1,2,3		
			cd)pireno.		
Aguas Naturales Aguas	Color (dilución	Espectrofotometría	(Inapreciable /	PEE16.	HACH 8025 10ª edición,
Residuales	1:20)	UV- VIS	Apreciable)		2014.
Lixiviados	Hidrocarburos	HPLC	Acenafteno,	PEE38	EPA 8310, 1986; EPA 8510
	Aromáticos		Acenaftileno,		C, 1996; EPA 8630 C,
	Policíclicos (HAP's)		Antraceno,		1996; EPA550.1 1990
			Benzo(a) antraceno,		
			Benzo(a)pireno, Dib		
			enzo(a,h)antraceno,		
			Fluoreno, Naftaleno,		
			Pireno. Benzo(b)fluo		
			ranteno,		

			Benzo(g,h,i)perileno, Benzo(k)fluorante no, Criseno, Fenantreno, Fluoranteno, Indeno(1,2,3 cd)pireno. Cromatografía líquida de alta eficiencia (HPLC), (0,0002 a 0,0006) mg/l		
Aguas naturales Aguas de consumo Aguas residuales	Nitratos	Espectrofotometría UV- VIS	(20 a 590) mg/l	PEE56	HACH 8039, 10a Edición, Año 2019
Aguas Naturales Aguas Residuales Aguas de Consumo	Nitrógeno como Nitratos	Espectrofotometría UV- VIS	(5,0 a 130) mg/l	PEE56	HACH 8039, 10a Edición, Año 2019
Aguas naturales Aguas de consumo Aguas residuales	Sulfuros	Espectrofotometría UV- VIS	(0,20 a 7,37) mg/l S	PEE45	HACH 8131, Edición 11, Año 2018
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Metales: Manganeso (Mn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,10 a 2,0) mg/l	PEE48.	Standard Methods. 24th ed. 2022, 3111 B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Metales: Zinc (Zn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,10 a 2,0) mg/l	PEE60.	Standard Methods. 24th ed, 2022, 3111 B
Aguas naturales Aguas de consumo Aguas residuales	Cianuros	Espectrofotometría UV- VIS	(0,05 a 1) mg/l	PEE42.	HACH 8027, 9a Edición, Año 2014
Aguas de consumo Aguas naturales Aguas residuales Lixiviados	Potencial de hidrógeno (pH)	Electrometría	(4,00 a 10,00) unidades de pH	PEE02	Standard Methods. 24th ed, 2022 4500 H+ B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Sólidos totales disueltos	Electrometría	(50 a 1 000) mg/l	PEE15	Standard Methods. 24th Ed.2022, 2510 B
Aguas naturales Aguas de consumo Aguas residuales	Sólidos totales	Gravimetría	(50 a 4 307) mg/l	PEE06	Standard Methods. 24th Ed. 2022, 2540 B

Lixiviados		1	I	1	
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Sólidos totales suspendidos	Gravimetría	(10 a 1 000) mg/l	PEE07	Standard Methods. 24th Ed. 2022, 2540 D
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Aceites y grasas	Gravimetría	(40 a 1 000) mg/l	PEE09	Standard Methods. 24th ed, 2022 5520 B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Demanda Química de Oxigeno (DQO)	Espectrofotometría UV- VIS	(20 a 5 000) mg/l	PEE03	Standard Methods. 24th ed, 2022 5220 D HACH 8000. 2017
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Fenoles	Espectrofotometría UV- VIS	(0,05 a 10) mg/l	PEE08	Standard Methods. 24th ed, 2022 5530 C HACH 8047, 8ª edición, 2014
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Fósforo	Espectrofotometría UV- VIS	(0,25 a 1 000) mg/l	PEE22	Standard Methods. 24th ed, 2022, 4500 P E HACH 8048, 10 ^a Edición, 2017
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Metales: Niquel (Ni)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,10 a 2,0) mg/l	PEE25	Standard Methods. 24th ed, 2022 3111-B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Metales: Bario (Ba)	Espectrofotometría Absorción Atómica, Llama Acetileno – Óxido Nitroso	(0,50 a 5,0) mg/l	PEE40	Standard Methods. 24th ed. 2022, 3111 D
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Hidrocarburos totales de petróleo (TPH)	Espectrofotometría IR	(0,20 a 144) mg/l	PEE27	EPA 418.1, 1978
Lixiviados		Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,05 a 10,0) mg/l	PEE23	Standard Methods, 24th ed, 2022 3111-B
Aguas naturales Aguas de	Metales: Cromo	Espectrofotometría	(0,10 a 10,0) mg/l	PEE39	Standard Methods. 24th

consumo Aguas residuales Lixiviados		Absorción Atómica, Llama Aire - Acetileno			ed. 2022, 3111 B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados		Espectrofotometría Absorción Atómica, Llama Aire - Acetileno - Óxido NItroso	(0,5 a 5,0) mg/l	PEE41	Standard Methods. 24th ed. 2022, 3111 D
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Hidrocarburos Aromáticos Policíclicos (HAP's)	Cromatografía líquida de alta eficiencia HPLC	(0,0002 a 0,005) mg/l Fluoranteno Benzo(b)fluoranten o Benzo (k) fluoranteno Benzo (a) pireno Benzo (g,h,i)pirileno Indeno pireno	PEE38	EPA 8310, 1986 EPA 8510 C, 1996 EPA 8630 C, 1996 EPA 550.1 1990 EPA 1311 1986
Aguas de consumo Aguas naturales Aguas residuales	Cloro libre residual	Espectrofotometría UV- VIS	(0,10 a 10,00) mg/l	PEE30	Standard Methods. 24th ed, 2022, 4500-CI-G HACH 8021, 9 ^a Edición, 2014
Aguas de consumo Aguas naturales Aguas residuales	Cloro residual total	Espectrofotometría UV- VIS	(0,10 a 10,00) mg/l	PEE30	Standard Methods. 24th ed, 2022 4500-CI-G HACH 8167, 10 ^a Edición, 2018
Aguas de consumo Aguas naturales Aguas residuales	Detergentes (MBAS)	Espectrofotometría UV- VIS	(0,10 a 10,0) mg/l	PEE05	HACH 8028, 9ª Edición, 2014
Aguas naturales Aguas de consumo Aguas residuales	Demanda bioquímica de oxígeno (DBO5)	Respirometría	(10 a 1 000) mg/l	PEE11	Standard Methods 24th ed, 2022 5210 D
Aguas naturales Aguas de consumo Aguas residuales	Aceites y grasas	Espectrofotometría IR	(0,20 a 100) mg/l	PEE27.	EPA 418.1, 1978
Aguas naturales Aguas de consumo Aguas residuales	Color	Espectrofotometría UV- VIS	(5 a 500) unidades Pt-Co	PEE16	HACH 8025, 10ª Edición. 2014
Aguas naturales Aguas de	Metales: Cobre	Espectrofotometría	(0,10 a 2,0) mg/l	PEE17.	Standard Methods. 24th

consumo Aguas residuales Lixiviados	(Cu)	Absorción Atómica, Llama Aire - Acetileno			ed. 2022, 3111 B
Aguas de consumo Aguas naturales Aguas residuales	Fósforo total	Espectrofotometría UV- VIS	(0,25 a 1 000) mg/l	PEE22	Standard Methods 24th ed, 2022, 4500 PE
					HACH 8190, 10 ^a Edición, 2017
Aguas de consumo Aguas naturales Aguas residuales	Cromo VI	Espectrofotometría UV	(0,025 a 10) mg/l	PEE29	HACH 8023, 10 ^a Edición, 2019
Aguas naturales Aguas de consumo Aguas residuales		Espectrofotometría UV- VIS	(0,50 a 101,3) mg/l	PEE61	HACH 8038, 9a Edición, Año 2017
Aguas naturales Aguas de consumo Aguas residuales	Amoniaco, NH3	Espectrofotometría UV- VIS	(0,6 a 123,2) mg/l	PEE61	HACH 8038, 9a Edición, Año 2017
Aguas Naturales Aguas Residuales Aguas de Consumo	Amonio, NH4	Espectrofotometría UV- VIS	(0,6 a 130,4) mg/l	PEE61	HACH 8038, 9a Edición, Año 2017
Aguas Naturales Aguas Residuales Aguas de Consumo	Dureza total expresado como CaCO3	Volumetría	(28 a 3 111) mg/l CaCO3	PEE21	Standard Methods. 24th Ed.2022, 2340 A, 2340 B, 2340 C
Aguas naturales Aguas de consumo Aguas residuales		Volumetría	(1 a 10,5) ml/l	PEE10.	Standard Methods. 24th Ed. 2022, 2540 F
Agua residual Agua consumo Lixiviados	Metales: Plomo (Pb)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,2 a 5,0) mg/l	PEE24	Standard Methods. 24th ed. 2022, 3111 B
Aguas naturales Aguas de consumo Aguas residuales	Cloruros	Volumetría	(10 a 25 000) mg/l	PEE31	Standard Methods, 24th ed, 2022, 4500-Cl-A, 4500-Cl-B
Aguas naturales Aguas de consumo Aguas residuales Lixiviados	Conductividad	Electrometría	(84 a 12 880) uS/cm	PEE15	Standard Methods. 24th ed, 2022 2510 B
Aguas naturales Aguas de consumo Aguas residuales	Nitrógeno de Nitritos	Espectrofotometría UV- VIS	(0,03 a 3) mg/l	PEE55.	HACH 8507, 11 ^a Edición, 2019
Agua consumo Agua natural Agua residual	Metales: Mercurio (Hg)	Espectrofotometría de absorción atómica, vapor frío	(0,1 - 898.30) ug/l	PEE122	STANDARD METHODS 24 th Ed 2023. 3112 B, EPA METHOD 3010 A adaptado,

	July 1992, EPA, EPA
	METHOD 7470 A
	September 1994

Categoría	En laboratorio Ensayos físico – químicos en suelos y sedimentos						
Campo							
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar							
Suelos Sedimentos	Hidrocarburos Aromáticos Policíclicos (HAP's)	Cromatografía líquida de alta eficiencia, HPLC	(0,06 a 2,00) mg/kg	PEE38.	EPA 3050 B, 1996; EPA 8310 C, 1986; EPA 3540 C 1996; EPA 23; EPA 3550 C 2007		
			Acenafteno, Acenaftileno, Antraceno,				
			Benzo(a) antraceno, Benzo(a)pireno, Dib				
			enzo(a,h)antraceno,				
			Fluoreno, Naftaleno, Pireno. Benzo(b)fluo				
			ranteno,				
			Benzo(g,h,i)perileno				
			, Benzo(k)fluorante no, Criseno,				
			Fenantreno,				
			Fluoranteno,				
			Indeno(1,2,3 cd)pireno.				
Suelos, lodos y	Potencial de	Electrometría	(4,00 a 10,00)	PEE86	EPA 9045 D, noviembre		
sedimentos	hidrógeno (pH)		unidades de pH		2004		
Suelos Sedimentos	Cadmio	Espectrofotometría Absorción Atómica,	(1 a 369) mg/kg	PEE23	EPA, Ed. 2 1996, 3050 B		
		Llama Aire -			Standard Methods. 24th		

		Acetileno			Ed. 2022, 3111 B
Suelos Sedimentos	Níquel	Espectrofotometría	(5 a 385) mg/kg	PEE25	EPA, Ed. 2 1996, 3050 B
		Absorción Atómica,			
		Llama Aire -			Standard Methods. 24th
		Acetileno			Ed. 2022, 3111 B
Suelos Sedimentos	Plomo	Espectrofotometría	(10 a 1 450) mg/kg	PEE24	EPA, Ed. 2 1996. 3050B
		Absorción Atómica,			Standard Methods, 24th
		Llama Aire -			ed, 2022 3111 B
		Acetileno			
Suelos Sedimentos	Hidrocarburos	Espectrofotometría	(132 a 15 100)	PEE14	EPA 3550 C, 2000
	totales de petróleo	IR	mg/kg		
	(TPH)				EPA 418.1,1978
Suelos, lodos y	Conductividad	Electrometría	(40,0 a 8 200)	PEE87	Standard Methods, 24th
sedimentos			uS/cm		ed, 2022 2510 B

Categoría	In situ						
Campo	Ensayos Físico - Químicos de Emisiones Gaseosas de Fuentes Fijas a la Atmosfera						
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar							
Emisiones de fuentes fijas de combustión	Monóxido de carbono (CO), Gases Contaminantes	Celdas electroquímicas	(20 a 1 525) ppm	PEE04	EPA CMT 30 revisión 1997 EPA CMT 34 revisión 1997		
Emisiones de fuentes fijas de combustión	Monóxido de nitrógeno (NO), Gases Contaminantes	Celdas electroquímicas	(20 a 1 520) ppm	PEE04	EPA CMT 30 revisión 1997 EPA CMT 34 revisión 1997		
Emisiones de fuentes fijas de combustión	Dióxido de Azufre (SO2), Gases Contaminantes	Celdas electroquímicas	(20 a 1 550) ppm	PEE04	EPA CMT 30 revisión 1997 EPA CMT 34 revisión 1997		
Emisiones de fuentes fijas de combustión	Dióxido de Nitrógeno (NO2), Gases	Celdas electroquímicas	(9 a 100) ppm	PEE04	EPA CMT 30 revisión 1997 EPA CMT 34 revisión 1997		

	Contaminantes				
Emisiones de fuentes fijas	Oxígeno (O2),	Celdas	(5 a 23) %	PEE04	EPA CMT 30 revisión 1997
de combustión	Gases	electroquímicas			EPA CMT 34 revisión 1997
	Contaminantes				
Emisiones de fuentes fijas	Óxidos de	Celdas	(9 a 1 584) ppm	PEE04	EPA CMT 30 revisión 1997
de combustión	nitrógeno (NOX)	Electroquímicas			EPA CMT 34 revisión 1997
Emisiones de fuentes fijas	Material	Gravimetría	(5 a 995) mg/m3	PEE18	EPA 5
de combustión	particulado				

Categoría	In situ					
Campo	Ensayos en calidad de aire					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia	
ensayar						
Calidad de aire	Particulas	Gravimétrico	(0,028-1,0970)	PEE69	502 Method of air	
	sedimentables		mg/cm2 (30 días)		sampling and analysis	

Categoría	In situ					
Campo	Ensayos en ruido laboral					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia	
ensayar						
Ruido Laboral	Ruido laboral	Sonometría	(38 a 140) dBA	PEE36	NTE INEN ISO 9612.2014	

Categoría	In situ						
Campo	Ensayos físicos en	Ensayos físicos en ambiente laboral					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar							
Ambiente laboral	Luminosidad	Celda Fotolumínica	45 a 5410) lx	PEE70	UNE-EN 12464-1-2003		

Ambiente laboral	Temperaturas para Estrés Térmico		Temperatura de bulbo húmedo (13 a 20)°C, Temperatura de globo (20 a 30)°C		ISO 7243.2017
Ambiente laboral	Temperaturas para Estrés Térmico	Termometría	Temperatura de bulbo seco: (20 a 30) °C	PEE71	ISO 7243.2017

Categoría	In situ					
Campo	Acústica ambiental					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia	
ensayar						
Ruido Ambiente	Ruido	Nivel de presión	(38 dB a 140dB)	PEE32	ISO 1996-2:2017	
		Sonora				

In situ							
Ensayos físico-químicos en aire ambiente							
Ensayo	Técnica	Rango	Método Interno	Método Referencia			
Monóxido de carbono (CO)	Espectrofotometría IR	(0,4 a 40) ppm	PEE 58	USEPA RFCA 0981-054 (CO)			
Dióxido de azufre (SO2)	Fluorescencia UV	(20 a 900) ppb	PEE 58	USEPA EQSA 0486-060 (SO2)			
Monóxido de nitrógeno (NO)	Quimioluminiscenci a	(40 a 900) ppb	PEE 58	USEPA RFNA 1298-074 (NO- NO2)			
Dioxido de nitrógeno (NO2)	Quimioluminiscenci a	(20 a 800) ppb	PEE 58	USEPA RFNA 1298-074 (NO- NO2)			
	Ensayos físico-quín Ensayo Monóxido de carbono (CO) Dióxido de azufre (SO2) Monóxido de nitrógeno (NO) Dioxido de	Ensayos físico-químicos en aire ambiento Ensayo Técnica Monóxido de Espectrofotometría IR Dióxido de azufre (SO2) Monóxido de Quimioluminiscenci nitrógeno (NO) Dioxido de Quimioluminiscenci	Ensayos físico-químicos en aire ambiente Ensayo Técnica Rango Monóxido de Espectrofotometría (0,4 a 40) ppm IR Dióxido de azufre (SO2) Monóxido de Quimioluminiscenci (40 a 900) ppb (itrógeno (NO)) Dioxido de Quimioluminiscenci (20 a 800) ppb	Ensayos físico-químicos en aire ambiente Ensayo Técnica Rango Método Interno Monóxido de Espectrofotometría (0,4 a 40) ppm PEE 58 Carbono (CO) Dióxido de azufre (SO2) Monóxido de Quimioluminiscenci (40 a 900) ppb PEE 58 nitrógeno (NO) Dioxido de Quimioluminiscenci (20 a 800) ppb PEE 58			

/	Aire ambiente	Ozono (O3)	Quimioluminiscenci	(20 a 800) ppb	PEE 58	USEPA EQOA 0880-047 (O3)
7	Aire ambiente	Material particulado (PM 10)	Gravimetría	(6 a 300) μg/m3	PEE 59	RFPS-0498-118
1	Aire ambiente	Material particulado (PM 2,5)		(6 a 200) mg/m3	PEE 59	RFPS-0498-118

Categoría	In situ				
Campo	Ensayos físico – quí	micos en aguas			
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia
ensayar					
Aguas naturales Aguas de	Conductividad	Electrometría	(84 a 12 880)	PEE33	Standard Methods. 24th
consumo Aguas residuales			uS/cm		ed. 2022, 2510 B
Aguas de consumo Aguas	Temperatura	Termometría	(5 a 50)ºC	PEE12	Standard Methods. 24th
naturales Aguas residuales					Ed. 2022, 2550 B
Agua natural	Oxigeno disuelto	Electrometría	(0,95 a 8,30) mg/L	PEE13	Standard Methods 24th ed,
Agua de mar					2022, 4500-OG
Agua residual		,			
Aguas Naturales Aguas	Potencial de	Electrometría	(4 a 10) unidades	PEE33	Standard Methods. 24th
Residuales Aguas de	hidrógeno (pH)		de pH		ed, 2022 4500 H+ B
Consumo	01 111 111		(0.10, 10.00) #	25525	
Aguas naturales Aguas de	Cloro libre residual	Espectrofotometría	(0,10 a 10,00) mg/l	PEE35	Standard Methods. 24th
consumo Aguas residuales		UV- VIS			ed, 2022 4500-Cl-G
					HACH 8021, 9ª Edición, 2014
Aguas de consumo Aguas	Clore recidual total	Espectrofotometría	(0,10 a 10,00) mg/l	PEE35	Standard Methods, 24th
naturales Aguas residuales	Cioro residual total	UV- VIS			ed, 2022 4500-Cl-G
Hataraics Agaas residuales		0 4 - 415			Cd, 2022 4300-Cl-G
					HACH 8167, 10 ^a Edición,
					2018
Aguas de consumo Aguas	Demanda Química	Espectrofotometría	(20 a 5 000) mg/l	PEE34	Standard Methods. 24th
naturales Aguas residuales		UV- VIS			ed, 2022 5220 D
_					

Categoría	En laboratorio				
Campo	Análisis Físico – qu	ímicos de suelos			
Producto o material a ensayar	Ensayo	Técnica	Rango	Método Interno	Método Referencia
Suelos, lodos y sedimentos	Manganeso (Mn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(32,48 a 1 430,51) mg/kg	PEE48	EPA, Ed. 2, 1996, 3050 B Standard Methods 24th ed, 2022 3111-B
Suelos, lodos y sedimentos	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(276,73 a 6 015,40) mg/kg	PEE 88	EPA, Ed. 2, 1996, 3050 B Standard Methods. 24th ed. 2022, 3111 B

Categoría	En laboratorio				
Campo	Ensayos físico-qu	uímicos en alimentos			
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia
ensayar					
Pescado y conservas	Histamina	Cromatografía líquida	(10 a 300) mg/kg	PEE113	NORMA UNE-EN ISO19343: 2017
Harina de pescado y Balanceado	Histamina	Cromatografía líquida	(100 a 2 000) mg/kg	PEE113	NORMA UNE-EN ISO19343: 2017
Fideos Harinas	Acidez	Volumetría	0,02 a 0,12%	PEE115	INEN-ISO 7305:2015
Frutas y derivados, bebidas no alcohólicas, salsas, conservas y	Potencial de hidrógeno (pH)	Electrometría	(2,00 a 10,00) Unidades de pH(2,00 a 10,00)	PEE114	AOAC 943.02, Ed. 21, 2019 AOAC 940.23 Ed. 21, 2019,981.12 Ed. 21, 2019,

		Unidades de pH		NTE INEN 526:2013:2013
		(2.22 2.21) 2/	DEE1.05	101000000000000000000000000000000000000
				AOAC 923.03 Ed. 21, 2019
Grasa	Gravimetría	(3,92 a 13,13) %	PEE102	AOAC 2003.06 Ed, 21,
		1/2 = 1		2019
Proteína	Kjedhal	(8,71 a 40,14) %	PEE103	AOAC 2001.11 Ed, 21,
				2019
Humedad	Gravimetría	(1,18 a 3,89) %	PEE100	INEN-ISO 11294:1994 1era
-				Ed, 2014
		1		NTE INEN 1117:2013
Humedad	Gravimetría	(10,41 a 72,75) %	PEE100	NTE INEN-ISO 6496:1999,
				1era Ed, 2015.
Ceniza	Gravimetría			AOAC 923.03 Ed. 21, 2019
Grasa	Gravimetría	(0,46 a 20,09) %	PEE102	AOAC 2003.06 Ed. 21,
				2019
Zinc (Zn)	Espectrofotometría	(6,76 a 52,10	PEE105	AOAC 985,35 Ed. 21, 2019
	Absorción Atómica,)mg/kg		
	Llama Aire -			
	Acetileno			
Proteína	Kjedhal	(6,47 a 35,14) %	PEE103	AOAC 2001.11 Ed. 21.
				2019
Humedad	Gravimetría	(3,22 a 61,88) %	PEE100	INEN 5534-2013
Grasa	Gravimetría	(2,09 a 87,76) %	PEE102	INEN ISO 8262-1:2005
Ceniza	Gravimetría	(0,77 a 12,05) %	PEE101	AOAC 923.03 Ed. 21, 2019
Proteína	Kjedhal	(3,01 a 47,77) %	PEE103	AOAC 2001.11 Ed. 21,
				2019
Sodio (Na)	Espectrofotometría	(510,36 a	PEE107	AOAC 985,35 Ed. 21, 2019
	Absorción Atómica,	27346,67) mg/kg		
	Llama Aire -			
	Acetileno			
Hierro (Fe)	Espectrofotometría	(15,33 a 74,80)	PEE106	AOAC 985,35 Ed. 21, 2019
, ,		•		
	Llama Aire -			
	Acetileno			
Magnesio (Mg)		(233,85 a 1371,54)	PEE110	AOAC 985,35 Ed. 21, 2019
5 - (5)	Absorción Atómica,	1		,=== , _===
	Llama Aire -	J	1	
	Zinc (Zn) Proteína Humedad Grasa Ceniza Proteína	Grasa Gravimetría Proteína Kjedhal Humedad Gravimetría Ceniza Gravimetría Humedad Gravimetría Ceniza Gravimetría Grasa Gravimetría Zinc (Zn) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno Proteína Gravimetría Grasa Gravimetría Grasa Gravimetría Grasa Gravimetría Sodio (Na) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno Hierro (Fe) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno Hierro (Fe) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno Magnesio (Mg) Espectrofotometría	Ceniza Gravimetría (3,20 a 8,34) % Grasa Gravimetría (3,92 a 13,13) % Proteína Kjedhal (8,71 a 40,14) % Humedad Gravimetría (1,18 a 3,89) % Ceniza Gravimetría (4,18 a 8,56) % Humedad Gravimetría (10,41 a 72,75) % Ceniza Gravimetría (0,41 a 2,35) % Grasa Gravimetría (0,46 a 20,09) % Zinc (Zn) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno (6,76 a 52,10) mg/kg Proteína Kjedhal (6,47 a 35,14) % Humedad Gravimetría (3,22 a 61,88) % Grasa Gravimetría (2,09 a 87,76) % Ceniza Gravimetría (0,77 a 12,05) % Proteína Kjedhal (3,01 a 47,77) % Sodio (Na) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno (15,33 a 74,80) mg/kg Hierro (Fe) Espectrofotometría Acetileno (15,33 a 74,80) mg/kg	Ceniza Gravimetría (3,20 a 8,34) % PEE101 Grasa Gravimetría (3,92 a 13,13) % PEE102 Proteína Kjedhal (8,71 a 40,14) % PEE103 Humedad Gravimetría (1,18 a 3,89) % PEE100 Ceniza Gravimetría (4,18 a 8,56) % PEE101 Humedad Gravimetría (10,41 a 72,75) % PEE100 Ceniza Gravimetría (0,41 a 2,35) % PEE101 Grasa Gravimetría (0,46 a 20,09) % PEE102 Zinc (Zn) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno (6,76 a 52,10 mg/kg PEE105 Proteína Kjedhal (6,47 a 35,14) % PEE103 Humedad Gravimetría (3,22 a 61,88) % PEE100 Grasa Gravimetría (0,77 a 12,05) % PEE100 Ceniza Gravimetría (0,77 a 12,05) % PEE101 Proteína Kjedhal (3,01 a 47,77) % PEE103 Sodio (Na) Espectrofotometría Absorción Atómica, Llama Aire - Acetileno (15,03 a 74,80) mg/kg PEE106

		Acetileno			l
Lácteos y Derivados	Cobre (Cu)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(1,24 a 15,38) mg/kg	PEE104	AOAC 985,35 Ed. 21, 2019
Lácteos y Derivados	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(145,46 a 12 492,87) mg/kg	PEE109	AOAC 985,35 Ed. 21, 2019
Lácteos y derivados	Acidez	Volumetría	(0,13 a 0,68) %	PEE115	INEN-ISO 7305:2015
Salsas, aderezos y conservas	Acidez	Volumetría	(1,12 a 3,08) %	PEE115	AOAC 935.57 Ed. 21, 2019
Snacks	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(425,08 a 3707,60) mg/kg	PEE107	AOAC 985,35 Ed. 21, 2019
Frutas y derivados	Acidez	Volumetría	(0,05 a 8,01) %	PEE115	AOAC 981.12 Ed. 21, 2019
Snacks	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(243,42 a 936,22) mg/kg	PEE110	AOAC 985,35 Ed. 21, 2019
Snacks	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(136,66 a 980,07) mg/kg	PEE109	AOAC 985,35 Ed. 21, 2019
Néctar, pulpas, concentrados, bebidas, frutas	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(206,36 a 504,4) mg/kg	PEE107	AOAC 985,35 Ed. 21, 2019
Carne y derivados	Humedad	Gravimetría	(4,38 a 75,33)%	PEE100	INEN-ISO1442:2013
Néctar, pulpas, concentrados, bebidas, frutas	Zinc (Zn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,89 a 7,00) mg/kg	PEE105	AOAC 985,35 Ed. 21, 2019
Néctar, pulpas, concentrados, bebidas, frutas	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire -	(43,00 a 344,30) mg/kg	PEE110	AOAC 985,35 Ed. 21, 2019

		Acetileno			
Carne y derivados	Ceniza	Gravimetría	(0,86 a 7,46) %	PEE101	AOAC 923.03 Ed. 21, 2019
Alimento de animales	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(1612,23 a 5 175,16) mg/kg	PEE109	AOAC 985,35 Ed. 21, 2019
Snacks	Ceniza	Gravimetría	(0,56 a 5,03) %	PEE101	AOAC 923.03 Ed. 21, 2019
Cereales y Derivados	Cobre (Cu)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(2,19 a 6,24) mg/kg	PEE104	AOAC 985,35 Ed. 21, 2019
Cereales y Derivados	Zinc (Zn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(12,37 a 122,88 mg/kg)	PEE105	AOAC 985,35 Ed. 21, 2019
Carne y derivados	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(1008,80 a 15897,38) mg/kg	PEE107	AOAC 985,35 Ed. 21, 2019
Carne y derivados	Proteína	Kjedhal	(9,51 a 15,99) %	PEE103	AOAC 2001.11 Ed. 21, 2019
Carne y derivados	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(184,67 a 521,11) mg/kg	PEE110	AOAC 985,35 Ed. 21, 2019
Cereales y Derivados	Hierro (Fe)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(31,84 a 172,73) mg/kg	PEE106	AOAC 985,35 Ed. 21, 2019
Carne y derivados	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(177,81 a 559,31) mg/kg	PEE109	AOAC 985,35 Ed. 21, 2019
Néctar, pulpas, concentrados, bebidas, frutas	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(32,20 a 616,43) mg/kg	PEE109	AOAC 985,35 Ed. 21, 2019

Snacks	Proteína	Kjedhal	(2,25 a 67,40) %	PEE103	AOAC 2001.11 Ed, 21, 2019
Alimento de animales	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(158,34 a 363,81) mg/kg	PEE110	AOAC 985,35 Ed. 21, 2019
Néctar, pulpas, concentrados, bebidas, frutas	Hierro (Fe)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(2,15 a 23,97) mg/kg	PEE106	AOAC 985,35 Ed. 21, 2019
Alimento de animales	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(479,28 a 2904,00) mg/kg	PEE107	AOAC 985,35 Ed. 21, 2019
Néctar, pulpas, concentrados, bebidas, frutas	Cobre (Cu)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,47 a 7,11) mg/kg	PEE104	AOAC 985,35 Ed. 21, 2019
Cereales y Derivados	Metales: Calcio (Ca)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(187,47 a 1 347,34) mg/kg	PEE109	AOAC 985,35 Ed. 21. 2019
Snacks	Grasa	Gravimetría	7,93 a 35,20) %	PEE102	AOAC 2003.06 Ed, 21, 2019
Cereales y Derivados	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(510,31 a 2419,24) mg/kg	PEE110	AOAC 985,35 Ed. 21, 2019
Cereales y Derivados	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(116,17 a 3370,92) mg/kg	PEE107	AOAC 985,35 Ed. 21, 2019
Snacks	Humedad	Gravimetría	(1,90 a 22,00) %	PEE100	INEN-ISO 6496:2015
Néctar, pulpas, concentrados, bebidas, frutas Vegetales	Sólidos solubles (°Brix)	Refractometría	(7,64 a 65,59) %	PEE117	AOAC 932.14 Ed. 21, 2019 AOAC 990.36 B, Ed. 21, 2019

Salsas, aderezos y conservas	Sólidos solubles (°Brix)	Refractometría	(4,38 a 32,49) %		AOAC 932.14 Ed. 21, 2019 AOAC 990.36 B, Ed. 21, 2019
Carne y derivados	Grasa	Gravimetría	(4,33 a 31,36)%	PEE102	AOAC 2003.06 Ed. 21, 2019

Categoría	En laboratorio							
Campo	Análisis Físico – Qu	Análisis Físico – Químicos en Alimentos						
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia			
ensayar								
Bebidas gaseosas, carbonatadas, energizantes y bebidas derivadas de café	Cafeína	Cromatografía líquida de alta resolución (HPLC)	(1 a 645) mg/L	PEE 118	AOAC 960.25, Ed 21. 2019, NTE INEN-ISO 20481:2014			
Café y Té	Cafeína	Cromatografía líquida de alta resolución (HPLC)	(0,048 a 3,61) g/100g	PEE 118	AOAC 960.25, Ed 21. 2019, NTE INEN-ISO 20481:2014			

Categoría	En laboratorio						
Campo	Ensayos físico – químicos en aguas						
Producto o material a ensayar	al a Ensayo Técnica Rango Método Interno Método R						
Aguas naturales Aguas de consumo Aguas residuales	Hierro	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(0,3 a 10,0) mg/l	PEE19	Standard Methods. 24th ed. 2022, 3111-B		
Aguas de consumo Aguas naturales Aguas residuales	Sodio (Na)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(7,10 a 50,42) mg/L	PEE88	Standard Methods. 24th ed. 2022, 3111 B		

Aguas de consumo Aguas naturales Aguas residuales	Potasio (K)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(2,41 a 19,44) mg/L	PEE89	Standard Methods. 24th ed. 2022, 3111 B
Aguas de consumo Aguas naturales Aguas residuales		Espectrofotometría de absorción atómica de llama, Aire – Acetileno	(0,54 a 30,94) mg/L	PEE90	Standard Methods. 24th ed. 2022 3111-B
Aguas de consumo Aguas naturales Aguas residuales	Magnesio (Mg)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(1,23 a 17,10) mg/L	PEE91	Standard Methods. 24th ed. 2022, 3111 B
Aguas de consumo Aguas naturales Aguas residuales	_	Espectrofotometría UV- VIS	(0,1 a 10) mg/L	PEE92	Standard Methods. 24th. 2022, 5540-C
Aguas de consumo Aguas naturales Aguas residuales		Electrometría	(2 a 1922) mg/l	PEE93	Standard Methods 24th ed, 2022, 5210-B, 4500-OG
Agua natural Agua de mar Agua residual	Oxigeno disuelto	Electrometría	(0,96 a 8,31) mg/L	PEE13	Standard Methods 24th ed, 2022, 4500-OG
Agua Natural Agua Residual	Nitrogeno total	Kjedhal	(1 a 100) mg/L	PEE94	Standard Methods 24th ed, 2022 4500-Norg C

Categoría	En laboratorio							
Campo	Ensayos físico -	Ensayos físico - químicos en suelos						
Producto o material a ensayar	Ensayo	Técnica	Rango	Método Interno	Método Referencia			
Suelos, lodos y sedimentos	Zinc (Zn)	Espectrofotometría Absorción Atómica, Llama Aire - Acetileno	(51,90 a 132,32) mg/kg	PEE 60	EPA, Ed. 2, 1996, 3050 B Standard Methods. 24th Ed. 2022, 3111 B			
Suelos, lodos y sedimentos	Potasio (K)	Espectrofotometría Absorción Atómica,	(95,91 a 2 691,79) mg/kg	PEE 89	EPA, Ed. 2, 1996, 3050 B			

		Llama Aire - Acetileno			Standard Methods. 24th ed. 2022, 3111 B
Suelos, lodos y sedimentos	Magnesio (Mg)	Espectrofotometría	(91,40 a 13 603,75) mg/kg	PEE 91	EPA, Ed. 2, 1996, 3050 B
sedimentos		Llama Aire - Acetileno	illig/kg		Standard Methods. 24th ed. 2022, 3111 B
Suelos, lodos y	Cobre (Cu)		(16,49 a 142,96)	PEE17	EPA, Ed. 2, 1996, 3050 B
sedimentos		Absorción Atómica,	mg/kg		
		Llama Aire -			Standard Methods 24th ed,
		Acetileno			2022 3111-B

Categoría	En laboratorio					
Campo	Ensayos fisicoquímicos en alimentos.					
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia	
ensayar						
Alimento de animales	Humedad	Gravimetría	(4,15 a 79,25) %	PEE100	INEN-ISO 6496:2015	

Categoría	En laboratorio							
Campo	Ensayos físico-quín	Ensayos físico-químicos en resinas						
Producto o material a ensayar	Ensayo	Técnica	Rango	Método Interno	Método Referencia			
Resinas	Hidrocarburos Aromáticos Policíclicos (HAP's)	Cromatografía líquida de alta eficiencia HPLC	(0,006 a 0,030) mg/m3	PEE38	EPA 3050B, 1996 EPA 8310 C, 1986 EPA 3540 C, 1996 EPA 23 EPA 3550 C 2007			
			Criseno					
			Pireno					

Fenantreno

Unidad Técnica - Francisco de Orellana

Alcances

Categoría	En laboratorio						
Campo	Análisis Físico – Químicos en Aguas						
Producto o material a	Ensayo	Técnica	Rango	Método Interno	Método Referencia		
ensayar							
Agua consumo	Potencial de	Electrometría	(4,00 a 10,00)	PEE02	Standard Methods. 24th		
Agua natural	hidrógeno (pH)		unidades de pH		ed, 2022 4500 H+ B		
Agua residual							
Agua consumo	Cloro libre	Espectrofotometría	(0,10 a 10,00) mg/L	PEE30	Standard Methods. 24th		
Agua natural	residual, cloro	UV- VIS			ed, 2022, 4500-Cl-G; HACH		
Agua residual	activo				8021, 9ª Edición, 2014		
Agua consumo	Conductividad	Electrometría	(84 a 12 880)	PEE15	Standard Methods. 24th		
Agua natural	eléctrica (CE)		uS/cm		ed, 2022 2510 B		
Agua residual							
Agua Lixiviados							
Agua consumo	Demanda Química	Espectrofotometría	(20 a 5 000) mg/L	PEE03	Standard Methods. 24th		
Agua natural	de Oxigeno (DQO)	UV Visible			ed, 2022 5220 D; HACH		
Agua residual					8000. 2017		
Agua Lixiviados							